The Z - Transformat ion Graph for an Outerp lane B ipar t i t e Graph has
نویسنده
چکیده
K e y w o r d s P l a n e graph, Outerplane graph, Bipartite graph, Perfect matching, Z-transformation graph. 1. I N T R O D U C T I O N A graph G is a planar graph if it can be embedded in plane such that edges only intersect at their end vertices. A plane graph is such an embedding. A plane graph is called an outerplane graph if all vertices are lie on the boundary of the exterior face. A graph G is called bipartite if its vertex set can be partitioned into two parts V1 and V2 such that every edge has one end in V1 and one in V2. Catacondensed benzenoid graphs [1-3] are natural graph-representations of an important type of benzenoid hydrocarbons [4] in organic chemistry. They are also a subclass of outerplane bipartite graphs. Some examples of outerplane bipartite graphs are illustrated in Figure 1.
منابع مشابه
Labeling Subgraph Embeddings and Cordiality of Graphs
Let $G$ be a graph with vertex set $V(G)$ and edge set $E(G)$, a vertex labeling $f : V(G)rightarrow mathbb{Z}_2$ induces an edge labeling $ f^{+} : E(G)rightarrow mathbb{Z}_2$ defined by $f^{+}(xy) = f(x) + f(y)$, for each edge $ xyin E(G)$. For each $i in mathbb{Z}_2$, let $ v_{f}(i)=|{u in V(G) : f(u) = i}|$ and $e_{f^+}(i)=|{xyin E(G) : f^{+}(xy) = i}|$. A vertex labeling $f$ of a graph $G...
متن کاملEdge pair sum labeling of spider graph
An injective map f : E(G) → {±1, ±2, · · · , ±q} is said to be an edge pair sum labeling of a graph G(p, q) if the induced vertex function f*: V (G) → Z − {0} defined by f*(v) = (Sigma e∈Ev) f (e) is one-one, where Ev denotes the set of edges in G that are incident with a vetex v and f*(V (G)) is either of the form {±k1, ±k2, · · · , ±kp/2} or {±k1, ±k2, · · · , ±k(p−1)/2} U {k(p+1)/2} accordin...
متن کاملThe total graph of a commutative semiring with respect to proper ideals
Let $I$ be a proper ideal of a commutative semiring $R$ and let $P(I)$ be the set of all elements of $R$ that are not prime to $I$. In this paper, we investigate the total graph of $R$ with respect to $I$, denoted by $T(Gamma_{I} (R))$. It is the (undirected) graph with elements of $R$ as vertices, and for distinct $x, y in R$, the vertices $x$ and $y$ are adjacent if and only if $x + y in P(I)...
متن کاملDOMINATION NUMBER OF TOTAL GRAPH OF MODULE
Let $R$ be a commutative ring and $M$ be an $R$-module with $T(M)$ as subset, the set of torsion elements. The total graph of the module denoted by $T(Gamma(M))$, is the (undirected) graph with all elements of $M$ as vertices, and for distinct elements $n,m in M$, the vertices $n$ and $m$ are adjacent if and only if $n+m in T(M)$. In this paper we study the domination number of $T(Gamma(M))$ a...
متن کاملThe Main Eigenvalues of the Undirected Power Graph of a Group
The undirected power graph of a finite group $G$, $P(G)$, is a graph with the group elements of $G$ as vertices and two vertices are adjacent if and only if one of them is a power of the other. Let $A$ be an adjacency matrix of $P(G)$. An eigenvalue $lambda$ of $A$ is a main eigenvalue if the eigenspace $epsilon(lambda)$ has an eigenvector $X$ such that $X^{t}jjneq 0$, where $jj$ is the all-one...
متن کامل